درجة حرارة مطلقة
درجة الحرارة المطلقة هي درجة الحرارة المقاسة على أساس الصفر المطلق ، ووحدتها كلفن. والعلاقة بين الصفر المطلق والصفر المئوي أن الصفر المطلق 273.15 يعادل درجة تحت الصفر المئوي . مثلاً، إذا كانت درجة حرارة الغرفة 20 درجة مئوية ، تكون بالكلفن = 20 + 273 = 293 كلفن.
في الفيزياء والكيمياء يعتبر الصفر المطلق ثابتاً طبيعياً، وهو أقل درجة حرارة على الإطلاق. ومن المستحيل الوصول إليها تماماً، لأن القانون الثالث للديناميكا الحرارية ينص على عدم إمكانية الوصول إلى الصفر المطلق ، وذلك بسبب التناسب الطردي بين الحجم والحرارة. ونتيجة لهذه العلاقة الطردية، فإذا بلغ جسم ما درجة الصفر المطلق فسوف يكون حجمه صفر. وإضافة إلى ذلك فإن الوصول إلى درجة الصفر المطلق يستلزم شغلاً هائلاً جداً . لأن التبريد يحتاج إلى طاقة ، أنظر إلى الثلاجة مثلا فهي تعمل بالطاقة الكهربية ، وكلما رغبنا في درجة حرارة أقل ، مثلا من -3 درجة مئوية إلى -11 أو -18 درجة مئوية فإن الثلاجة تستهلك طاقة أكبر ، ويزداد هذا الشغل زيادة متزايدة الكبر كلما اقتربنا من “الصفر المطلق”.
- تبلغ درجة حرارة الكون في الفراغ الخارجي 2.7 درجة كلفن. كما أجريت تجارب للتبريد وصلت إلى نحو 001و0 درجة كلفن.
مقدمة
تنشأ الحرارة من الاهتزاز العشوائي للجسيمات التحت مجهرية المكوّنة للمادة (مثل الجزيئات والذرات). تُشكّل هذه الحركات طاقة حركية في المادة. وعلى وجه الخصوص أكثر، درجة الحرارة المطلقة لأي مقدار من المادة هي قياس متوسط الطاقة الحركية لنوع محدد من الحركة التذبذبية والاهتزازية للجسيمات المكوّنة للمادة، وتسمى “الحركات الانتقالية”. الحركات الانتقالية أمر عادي، فجسم كامل يتحرك في فضاء ثلاثي البعد تتحرك الجسيمات فيه وتتبادل الطاقة في اصطدامات. الصورة على اليمين تظهر الحركة الانتقالية في الغازات، وتحتها صورة أخرى تظهر الحركة الانتقالية في المواد الصلبة. نقطة الصفر في درجة الحرارة المطلقة (الصفر المطلق) هي درجة الحرارة التي تكون عندها الجسيمات المشكلة للمادة قريبة[ملاحظة 1] لدرجة أنها تتوقف تماماً عن الحركة، حيث تبقى الطاقة الحركية هي 0 عند درجة الصفر المطلق.
في كل مكان في العالم يقوم العلماء بالقياس بواسطة وحدات “Si” (نظام الوحدات الدولي)، وفي نظام الوحدات هذا تقاس درجة الحرارة المطلقة بوحدة “الكلفن” ورمزها هو “ك” (K). لكن بالرغم من ذلك، ففي الولايات المتحدة يسخدم “مقياس رانكين” لقياس درجة الحرارة المطلقة في العديد من مجالات الهندسة.
تم باتفاق دولي تعريف مقياس الكلفن بنقطتين: الصفر المطلق والنقطة الثلاثية للماء. الصفر المطلق هو أخفق حرارة في الطبيعة، وهو يُمثل درجة 0 ك أو 273.16ْ- مئوية. أما النقطة الثلاثية للماء فهي درجة 273.16 ك أو 0.01ْ مئوية. يُحقق هذا التعريف ثلاثة أشياء:
1. يُثبّت مقدار وحدة الكلفن بأنها جزء من 273.16 بالضبط من النقطة الثلاثية للماء.
2. يُحدد مقدار درجة الكلفن بأنه مساوٍ تماما للدرجة المئوية الواحدة (من حيث زيادة الحرارة بزيادة كل درجة).
3. يُحدد الفرق بين نقطة الصفر في كل من المقياسين، حيث تبلغ درجة الصفر المئوي 273.16 بالضبط على مقياس الكلفن.
جدول درجة الحرارة المطلقة
درجة الحرارة | أقصى طول موجي[1] of لفوتونات جسم أسود |
||
---|---|---|---|
الكلفن | درجة مئوية | ||
الصفر المطلق (تماما حسب التعريف) |
0 ك | −273.15 °م | لا نهائي[2] |
أبرد درجة حرارة مُقاسة[3] |
450 pK | −273.149,999,999,55 °م | 6,400 كم |
ملليكلفن واحد (تماماً حسب التعريف) |
0.001 ك | −273.149 °م | 2.897,77 م (الراديو, إذاعة إف إم)[4] |
النقطة الثلاثية للماء (تماماً حسب التعريف) |
273.16 ك | 0.01 °م | 10,608.3 ن.م (أ.ت.ح ذات الأطوال الموجية العالية) |
نقطة غليان الماء[A] | 373.1339 ك | 99.9839 °م | 7,766.03 ن.م (أ.ت.ح متوسطة الطول الموجي) |
مصباح كهربائي متوهج[B] | 2500 ك | ≈2,200 °م | 1,160 ن.م (أ.ت.ح قريبة)[C] |
السطح المرئي للشمس[D][5] | 5,778 ك | 5,505 °م | 501.5 ن.م (ضوء أخضر-أزرق) |
صاعقة البرق l[E] |
28 kK | 28,000 °م | 100 ن.م (الضوء الفوق بنفسجي البعيد) |
نواة الشمس[E] | 16 MK | 16 مليون °م | 0.18 ن.م (الأشعة السينية) |
سلاح نووي حراري (أقصى حرارة)[E][6] |
350 MK | 350 مليون °م | 8.3×10−3 ن.م (أشعة غاما) |
نواةنجم عالي الكتلة في أيامه الأخيرة[E][7] |
3 GK | 3 مليار °م | 1×10−3 ن.م (أشعة غاما) |
اندماج نظام نجم نيوتروني ثنائي[E][8] |
350 GK | 350 مليار °م | 8×10−6 ن.م (أشعة غاما) |
مصادم أيوني ثقيل نسبيا [E][9] |
1 TK | 1 ترليون °م | 3×10−6 ن.م (أشعة غاما) |
اصطدام سيرن لبروتونات مع نوى[E][10] |
10 TK | 10 ترليون °م | 3×10−7 ن.م (أشعة غاما) |
الكون بعد 5.391×10−44 s من الانفجار العظيم[E] |
1.417×1032 K | 1.417×1032 °م | طول بلانك (تردد بلانك)[11] |
ملاحظات
- ^ العلاقة بين الحجم والحرار علاقة طردية، ولذلك فالأجسام تنكمش في البرد الشديد.
المراجع
- ^ The cited emission wavelengths are for true black bodies in equilibrium. In this table, only the sun so qualifies. CODATA 2006 recommended value of 2.8977685(51)×10−3 m K used for Wien displacement law constant b.
- ^ اكتب عنوان المرجع بين علامتي الفتح
<ref>
والإغلاق</ref>
للمرجعT0
- ^ A record cold tempe rature of 450 ±80 pK in a Bose–Einstein condensate (BEC) of sodium atoms was achieved in 2003 by researchers at MIT. Citation: Cooling Bose–Einstein Condensates Below 500 Picokelvin, A. E. Leanhardt et al., Science 301, 12 Sept. 2003, p. 1515. It’s noteworthy that this record’s peak emittance black-body wavelength of 6,400 kilometers is roughly the radius of Earth.
- ^ The peak emittance wavelength of 2.897,77 م is a frequency of 103.456 MHz
- ^ Measurement was made in 2002 and has an uncertainty of ±3 kelvin. A 1989 measurement produced a value of 5,777.0±2.5 K. Citation: Overview of the Sun (Chapter 1 lecture notes on Solar Physics by Division of Theoretical Physics, Dept. of Physical Sciences, University of Helsinki).
- ^ The 350 MK value is the maximum peak fusion fuel temperature in a thermonuclear weapon of the Teller–Ulam configuration (commonly known as a hydrogen bomb). Peak temperatures in Gadget-style fission bomb cores (commonly known as an atomic bomb) are in the range of 50 to 100 MK. Citation: Nuclear Weapons Frequently Asked Questions, 3.2.5 Matter At High Temperatures. Link to relevant Web page. All referenced data was compiled from publicly available sources.
- ^ Core temperature of a high–mass (>8–11 solar masses) star after it leaves the main sequence on the Hertzsprung–Russell diagram and begins the alpha process (which lasts one day) of fusing silicon–28 into heavier elements in the following steps: sulfur–32 → argon–36 → calcium–40 → titanium–44 → chromium–48 → iron–52 → nickel–56. Within minutes of finishing the sequence, the star explodes as a Type II مستعر أعظم. Citation: Stellar Evolution: The Life and Death of Our Luminous Neighbors (by Arthur Holland and Mark Williams of the University of Michigan). Link to Web site. More informative links can be found here, and here, and a concise treatise on stars by NASA is here.
- ^ Based on a computer model that predicted a peak internal temperature of 30 MeV (350 GK) during the merger of a binary neutron star system (which produces a gamma–ray burst). The neutron stars in the model were 1.2 and 1.6 solar masses respectively, were roughly 20 km in diameter, and were orbiting around their barycenter (common center of mass) at about 390 Hz during the last several milliseconds before they completely merged. The 350 GK portion was a small volume located at the pair’s developing common core and varied from roughly 1 to 7 km across over a time span of around 5 ms. Imagine two city-sized objects of unimaginable density orbiting each other at the same frequency as the G4 musical note (the 28th white key on a piano). It’s also noteworthy that at 350 GK, the average neutron has a vibrational speed of 30% the speed of light and a relativistic mass (m) 5% greater than its rest mass (m0). Torus Formation in Neutron Star Mergers and Well-Localized Short Gamma-Ray Bursts, R. Oechslin et al. of Max Planck Institute for Astrophysics., arXiv:astro-ph/0507099 v2, 22 Feb. 2006. An html summary.
- ^ Results of research by Stefan Bathe using the PHENIX detector on the Relativistic Heavy Ion Collider at Brookhaven National Laboratory in Upton, New York, U.S.A. Bathe has studied gold-gold, deuteron-gold, and proton-proton collisions to test the theory of quantum chromodynamics, the theory of the strong force that holds atomic nuclei together. Link to news release.
- ^ How do physicists study particles? by CERN.
- ^ The Planck frequency equals 1.85487(14)×1043 Hz (which is the reciprocal of one Planck time). Photons at the Planck frequency have a wavelength of one Planck length. The Planck temperature of 1.41679(11)×1032 K equates to a calculated b /T = λmax wavelength of 2.04531(16)×10−26 نـم. However, the actual peak emittance wavelength quantizes to the Planck length of 1.61624(12)×10−26 نـم.